

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code :Introduction to Solid Mechanics(18CE0103) Course & Branch: B.Tech - CE

Year &Sem: II-B.Tech & I-Sem

Regulation: R18

<u>UNIT –I</u>

SIMPLE STRESSES AND STRAINS &

COMPOUND STRESSES AND STRAINS

1.	a)	Define: Modulus of rigidity and Modulus of Elasticity	[2M]
	b)	Define: Bulk-modulus and Poisson's Ratio.	[2M]
	c)	What is thermal Stress?	[2M]
	d)	Define principal stresses and principal plane.	[2M]
	e)	What is the radius of Mohr's circle?	[2M]
	f)	What is mean by position of principal planes?	[2M]
2.	a)	A rod 150 cm long and of diameter 2 cm is subjected to an axial pull of 20 kN. If the model elasticity of the material of the rod is $2x10^5$ N/ mm ² ; determine: the Stress, Strain and Elo of the rod.	
	b)	Explain about St.Venant's principle	[3M]
2	A of	the former wide 12 mm thick and 200 mm long is subjected to an avial will of 94 l-N	Find the

- **3.** A steel bar 50 mm wide, 12 mm thick and 300 mm long is subjected to an axial pull of 84 kN. Find the changes in the length, width, thickness and the volume of the bar. [10M]
- 4. Derive the relation between Young's Modulus (E), Rigidity Modulus (G) and Bulk Modulus (K).

[10M]

5. Two brass rods and one steel rod together supports a load as shown in fig. If the stresses in brass and steel are not to exceed 60 N/mm² and 120 N/ mm², find the safe load that can be supported. Take E for steel = $2x10^5$ N/ mm₂ and for brass = $1x10^5$ N/ mm₂. The cross-sectional area of steel rod is 1500 mm² and of each brass rod is 1000 mm² [10M]

Introduction to Solid Mechanics

6. A member ABCD is subjected to point loads P1, P2, P3 and P4 as shown in figure. Calculate the force P2 necessary for equilibrium, if P1=45 kN, P3=450 kN and P4=130kN. Determine the total elongation of the member, assuming the modulus of elasticity to be 2.1×10^5 N/ mm2 [10M]

- 7. The modulus of rigidity for a material is $0.51 \times 10^5 \text{ N/ mm}^2$. A 10 mm diameter rod of a material was subjected to an axial pull of 10 kN and the changes in diameter was observed to be 3×10^{-3} mm. Calculate Poisson's ratio, E and K. [10M]
- 8. The normal stress in two mutually perpendicular directions are 600N/mm² and 300N/mm² both tensile. The complimentary shear stresses in these directions are of intensity 450 N/mm². Find the normal, tangential stresses on the two planes which are equally inclined to the planes carrying the normal stresses mentioned above. [10M]
- 9. Direct stresses of 120 N/mm² tensile and 90 N/mm² compressive exist on two perpendicular planes at a certain point in a body. They are also accompanied by shear stress on the planes. The greatest principal stress at a point due to these is 150 N/mm². [10M]
 i) What must be the magnitude of shearing stresses on the two planes? [5M]
 ii) What will be the maximum shearing stress at the point? [5M]
- 10. At a point in a strained material, the stresses on two planes, at right angles to each other are 20 N/mm^2 and 10 N/mm^2 both tensile. They are also accompanied by shear stress of a magnitude of 10 N/mm^2 . Find the location of principal planes and evaluate the principal stresses [10M]
- 11. An elemental cube is subjected to tensile stresses of 30 N/mm² and 10 N/mm² acting on two mutually perpendicular planes and a shear stress of 10 N/mm² on these planes. Draw the Mohr's circle of stresses and hence or otherwise determine the magnitudes and directions of principal stresses and also the greatest shear stress.
 [10M]

<u>UNIT –II</u>

SHEAR FORCE AND BENDING MOMENTS &

THEORY OF SIMPLE BENDING

1. a) Mention the different types of beams. [2M] **b**) What do you understand by the term point of contra flexure? [2M] What is maximum bending moment in a simply supported beam of span 'L' subjected to UDL **c**) of 'w' over entire span? [2M] **d**) Mention the types of supports. [2M] Write down the bending stress equation. e) [2M] What is meant by Neutral axis of the beam? **f**) [2M] Draw shear force and bending moment diagram for cantilever beam subjected to uniformly 2. distributed load. [10M] **3.** Draw the shear force and bending moment diagram for the cantilever beam shown in figure [10M] 3 KN 2 kN/m

4. Draw shear force and bending moment diagram for the following beam

[10M]

[10M]

20 kN

С

2 m

240 kN-m

2 m

5. Draw shear force and bending moment diagram for the following beam

10 kN/m

4 m

- 6. Draw shear force and bending moment diagram for simply supported beam subjected to Eccentric point load. [10M]
- 7. Derive the bending equation M/I = f/y = E/R, write all the assumptions made [10M].
- 8. A cast Iron beam is of T- section has the following dimensions Flange: 100 mm x 20 mm Web: 80 mm x 20 mm. The beam is simply supported on a span of 8 meters and carries a uniformly distributed load of 1.5 KN/m length of entire span. Determine the maximum tensile and compressive stresses. [10M]
- **9.** A rolled steel joist of I section has a dimensions as shown in fig. This beam of I section carries a uniformly distributed load of 40 kN /m run on a span of 10 m, calculate the maximum stress

[10M]

produced due to bending.

- 10. A beam is simply supported and carries a uniformly distributed load of 40KN/m run over the whole span. The section of the beam is rectangular having depth as 500 mm. If the maximum stress in the material of the beam is 120 N/mm² and moment of inertia of the section is 7 x 10 8 mm⁴, find the span of the beam. [10M]
- **11.** A water main of 500 mm internal diameter and 20 mm thick is running full. The water main is of cast iron and is supported at two points 10 m apart. Find the maximum stress in the metal. The cast iron and weigh 72×10^3 N/m³ and 1×10^4 N/m³ respectively [10M]

<u>UNIT –III</u>

SHEAR STRESS DISTRIBUTION &

TORSION OF CIRCULAR SHAFTS AND SPRINGS

- **1.** a) State the assumptions while deriving the general formula for shear stresses. [2M]
 - b) What is the ratio of maximum shear stress to the average shear stress in the case of solid circular section? [2M]
 - c) Where the shear stress is max for Triangular section? [2M]
 - d) What are the assumptions made in torsion equation? [2M]
 - e) Write down the expression for power transmitted by a shaft. [2M]
 - f) State the differences between closed and open coil helical springs. [2M]
- A rectangular beam 100 mm wide and 250 mm deep is subjected to a maximum shear force of 50 KN. Determine i) Average shear stress ii) Maximum shear stress iii) Shear stress at a distance of 25 mm above neutral axis. [10M]
- 3. An I-section has 100 mm wide and 12 mm thickness, a web of 120 mm height and 10 mm thickness. The section is subjected to bending moment of 15 KN-m and shear force of 10 KN. Find the maximum bending stress and maximum shear stress and draw shear stress distribution diagram
 [10M]
- A simply supported beam carries a uniformly distributed load of intensity 30 N/mm over the entire span of 2 m. The cross section of beam is a T-section having flange 125 x 25 mm and web 175 x 25 mm. Calculate the maximum shear stress for the section subjected to maximum shear force. Also draw the shear stress distribution. [10M]
- Prove that the maximum shear stress in a circular section of a beam is 4/3 times the average shear stress
 [10M]
- 6. The shear force acting on a beam at a section is 'F'. The section of the beam is triangular base b and of an altitude h. The beam is placed with its base horizontal. Find the maximum shear stress and the shear stress at the neutral axis . [10M]
- 7. Derive the relation for a circular shaft when subjected to torsion $\frac{T}{J} = \frac{\tau}{R} = \frac{C\theta}{L}$ [10M]
- 8. A solid shaft of 200 mm diameter has the same cross sectional area as that of a hollow shaft of the same material with inside diameter of 150 mm. Find the ratio of the power transmitted by the hollow shaft by the same speed. [10M]
- 9. A hollow shaft is to transmit 300kW power at 80 rpm. If the shear stress is not exceed 60 N/mm2 and the internal diameter is 0.6 of the external diameter. Find the external and internal diameters assuming that the maximum torque is 1.4 times the mean. [10M]
- 10. A solid circular shaft transmits 75 kW power at 200 rpm. Calculate the shaft diameter, if the twist in the shaft is not to exceed 1^0 in 2 m length of shaft, and shear stress is limited to 50 N/mm2. Take C= 1 x 10^5 N/mm2. [10M]
- 11. A closely coil helical spring of round steel wire 10 mm in diameter having 10 complete turns with

a mean diameter of 12 cm is subjected to an axial load of 200 N. Determine : (i) Deflection of the beam spring (ii) Maximum shear stress in the wire and (iii) Stiffness of the spring. Take C= 8×10^4 N/mm2. [10M]

<u>UNIT –IV</u>

DEFLECTIONS OF BEAMS

- a) A cantilever is subjected to a point load W at the free end. What is the slope and deflection at 1. the free end? [2M] **b**) Calculate the maximum deflection of a simply supported beam carrying a point load of 100 KN at mid span. Span = 6 m, $E= 20000 \text{ kN/m}^2$. [2M] State the condition for the use of Macaulay's method. [2M] **c**) d) Define: Mohr's Theorem for slope and deflection. [2M] What is the relation between slope, deflection and radius of curvature of a beam? [2M] e) f) What is the maximum deflection in a simply supported beam subjected to uniformly distributed load over the entire span? [2M] Prove that the relation that M= $EI\frac{d^2y}{dx^2}$ 2. [10M] 3. Derive the expression for slope and deflection of a simply supported beam carrying a point load at Centre using Moment area method [10M] 4. A beam 6 m long, simply supported at its ends, is carrying a point load of 50 kN at its center. The moment of inertia of the beam is given as equal to $78 \times 10^6 \text{ mm}^4$ and. If E for the material of the beam = 2.1×10^5 N/mm², calculate: (i) deflection at the centre of the beam and (ii) slope at the supports. [10M] 5. A beam of length 6 m is simply supported at its ends and carries a point load of 40 kN at a distance of 4 m from the left support. Find the deflection under the load and maximum deflection. Also calculate the point at which maximum deflection takes place. Given moment of inertia of beam is 7.33 x 10^7 N/mm2 and E = 2 x 10^5 N/mm2. Use Macaulay's method. [10M] 6. A cantilever of length 3m carries a uniformly distributed load over the entire length. If the deflection at the free end is 40 mm, find the slope at the free end. [10M] 7. Derive the expression for slope and deflection of a cantilever beam carrying a point load at the free end by Moment Area method. [10M] 8. A beam of uniform rectangular section 200 mm wide and 300 deep is simply support at its ends. It carries a uniformly distributed load of 9 kN/m run over the entire span of 5 m. If the value of E for the beam material is 1×104 N/mm2, find: (i) Slope at the supports and (ii) Maximum deflection. [10M]
- 9. A simply supported beam carries a UDL of 20 kN/m over its span of 8 m. Determine the slope at the ends and the deflection at mid span by moment area method if $E = 200 \text{ G N/m}^2$ and $I = 30,000 \text{ cm}^4$. [10M]
- **10.** Derive the expression for slope and deflection of a simply supported beam carrying a uniformly distributed load of w per unit length over the entire length using Macaulay's method [10M]
- **11.** A beam of length 5 m of uniform rectangular section is supported at its ends and carries a uniformly distributed load over the entire length. Calculate the depth of the section if the maximum permissible bending stress is 8 N/mm² and central deflection not to exceed 10 mm.

Take $E = 1.2 \times 10^4 \text{ N/ mm2}$.

$\underline{UNIT} - \underline{V}$

COLUMNS

1.	a)	Define the terms column and what are the types of columns?	[2M]	
	b)	Define Slenderness Ratio and Buckling.	[2M]	
	c)) What are the different modes of failures of a column?		
	d)	What is crippling load? Give the effective length of columns when both ends hinged when both ends fixed.	and [2M]	
	e)	How columns are classified depending upon slenderness ratio?	[2M]	
2.	a)	What are the assumptions made in Euler's theory?	[3M]	
	b)	Find the ratio of buckling strength of a solid column to that of a hollow column of	the same	

- b) Find the ratio of buckling strength of a solid column to that of a hollow column of the same material and having the same cross –sectional area. The internal diameter of the hollow column is half of its external diameter. Both the columns are hinged and the same length. [7M]
- **3.** Compare the Euler crippling loads of two columns-one of solid circular section and the second of hollow circular section of internal diameter 70% of the external diameter if they are of the same material, same length, same area, and same end conditions. [10M]
- **4. a**) Determine the crippling load on a column when both ends of columns are hinged. [5M]
 - b) An angular section 240 x 120 x 20 mm is used as 6 m long column with both ends are fixed. What is the crippling load for the column? Take E = 210 GPa [5M]
- 5. A Built-Up column consisting of 150 mm \times 100 mm R.S.J with 20 mm \times 12 mm riveted in each plane as shown in figure given below. Calculate the safe load of the column carry of 4 m long having one end fixed and the other hinged with a factor of safety 3.5. Take the properties of the joist: area = 2167 mm2, I_{XX} = 8.39 \times 10⁶ mm⁴, I_{YY} = 0.945 \times 10⁶ mm⁴ and E= 2 x 10⁵ N/mm² [10M]

- 6. A rectangular column of wood, 3 m long, carries a load of 300 kN. Determine whether or not a section of size 200 mm x 150 mm will be able to carry this load if a factor of safety of 3 is to be used, assuming Euler's formula is applicable. E = 12.5 GPa and the permissible stress is 12 MPa. If this section will not be able to carry this load, design a square section to do so. [10M]
- 7. A built up section has an overall depth of 400 mm, width of flanges 50 mm and web thickness 30 mm. It is used as a beam with simply supported ends and it deflects by 10 mm when subjected to a load of 40 kN/m length. Find the safe load if this I-section is used as a column with both ends hinged. Use Euler's formula. Assume a factor of safety 1.75 and take $E = 2 \times 10^5$ N/mm². [10M]
- Derive an Euler's load expression for the column with one end fixed and the other end hinged.
 [10M]
- 9. Determine the Euler critical load for the column section shown in Fig. if its length is 3 m and (i) if its ends are hinged and (ii) if its ends are fixed. E = 200 GPa. [10M]

10. a)	What are the limitations of Euler's theory?	[3M]
b)	Derive the Euler's equation for the condition both ends are hinged.	[7M]

11. Drive the equation for the Euler's crippling load for a both ends are fixed. [10M]

Prepared By: D. SUKANYA

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : ISM(18CE0103)

Course & Branch: B.Tech - CE

Year & Sem: II-B.Tech & I-Sem

Regulation: R18

<u>UNIT –I</u>

SIMPLE STRESSES AND STRAINS &

COMPOUND STRESSES AND STRAINS

1) Stress is			[]
A)External force	B) Internal re	esistive force		
C) Axial force	D) Radial for	ce		
2) Following are the basic type	s of stress exce	pt	[]
A) Tensile stress	B) Compress	ive stress		
C) Shear stress	D) volumetri	c stress		
3) When tensile stress is applie	d axially on a c	circular rod its	[]
A) Diameter decreases	B) length dec	creases		
C) Volume does not change	D) All of the	above		
4) When compressive stress is	applied axially	on a circular rod its	[]
A) Diameter decreases	B) length dec	creases		
C) Volume does not change	D) All of the	above		
5) Tensile Strain is			[]
A) Increase in length / original	length	B) Decrease in length / original ler	ngth	
C) Change in volume / original	volume	D) All of the above		
6) Compressive Strain is			[]
A)Increase in length / original	length	B) Decrease in length / original ler	ngth	
C) Change in volume / original	volume	D) All of the above		
7) Volumetric Strain is			[]
A) Increase in length / original	length	B) Decrease in length / original len	ngth	
C) Change in volume / original	volume	D) All of the above		
8) Hooke's law is applicable w	rithin		[]

		1
A) Elastic limit	B) Plastic limit	
C) Fracture point	D) Ultimate strength	
9) Young's Modulus of elastic	ity is []	
A) Tensile stress / Tensile strai	n B) Shear stress / Shear strain	
C) Tensile stress / Shear strain	D) Shear stress / Tensile strain	
10) Modulus of rigidity is	[]	
A)Tensile stress / Tensile strain	B) Shear stress / Shear strain	
C) Tensile stress / Shear strain	D) Shear stress / Tensile strain	
11) Bulk modulus of elasticity	is []	
A)Tensile stress / Tensile strain	B) Shear stress / Shear strain	
C) Tensile stress / Shear strain	D) Normal stress on each face of cube / Volumetric stra	in
12) Factor of safety is	[]	
A)Tensile stress / Permissible	stress B) Compressive stress / Ultimate stress	
C) Ultimate stress / Permissible	e stress D) Ultimate stress / Shear stress	
13) Poisson's ratio is	[]	
A)Lateral strain / Longitudinal	strain B) Shear strain / Lateral strain	
C)Longitudinal strain / Lateral	strain D) Lateral strain / Volumetric strain	
14) The total extension in a bar	c, consists of 3 bars of same material, of varying sections is[]	
A)P/E(L1/A1+L2/A2+L3/A3)	B) P/E(L1A1+L2A2+L3A3)	
C) PE(L1/A1+L2/A2+L3/A3)	D) PE(L1/A1+L2/A2+L3/A3)	
15) The relationship between Y given by	Young's modulus (E), Bulk modulus (K) and Poisson's ratio (μ) is []	5
A)E=2K(1-2 μ) B)E=3K(1-2	μ) C) E=2K(1-2 μ) D)E=2K(1-3 μ)	
16) The relationship between Y is given by	Young's modulus (E), Modulus of rigidity (C) and Bulk modulus ((K)
A)E=9CK/(C+3K)	B) E=9CK/(2C+3K)	
C) E=9CK/(3C+K)	D) E=9CK/(C-3K)	
17) The total extension of a tap load (P), is given of	per rod of length 'L' and end diameters 'D1' and 'D2', subjected t	o a
A)4PL/ПЕ. D1D2	B) 3PL/IIE. D1D2	
C)2PL/ПЕ. D1D2	D) PL/ПЕ.D1D2	
18) The deformation per unit le	ength is called []	
A) tensile stress B) compress	ive stressC) shear stress D) strain	

			QUESTION BANK	2019
19) The maximu	im energy stored at ela	stic limit of a material is ca	lled	1
A) resilience	B) proof resilience	C) modulus of resilience	D) bulk resilienc	e
,	/ 1	e extending from origin to	,	
·	B) elastic range	C) semi plastic range	D) semi elastic ra	
	y has Poisson's ratio e		_ ,]
A) 0	B) 1	C) less than 1	D) greater than o	-
	stress and strain is know	,	[1
A) Modulus of e		B) Young's modulus	L	1
C) Both a. and b	•	D) None of the above		
,		s-strain diagram is the ratio	of [1
	king point and original	-	L	Ţ
	ting point and reduced			
	ad and original cross-			
	nd original cross-section			
, 0		.5 x 106 mm3. What is the opa and 160 Mpa respectively	0	
A) 1000 mm3	B) 1230 mm.	C) 1500 mm3	D) 2000 1	nm3
25) Two paralle	l, equal and opposite f	orces acting tangentially to	the surface of the bod [y is called as]
A) Complemen	tary stress B) Co	ompressive stress		
C) Shear stress	D) Te	ensile stress		
26) Maximum s	shear stress is equal to]]
A) (σ1 –σ2)/2	B) $(\sigma 1 + \sigma 2)$	$^{\prime 2}$ C) $(\sigma 1 + 2\sigma 2)/2$	D) None	
27) Maximum to	otal strain energy is eq	ual to	[]
Α) (σ12 +σ22)/2	2E B) $(\sigma 12 + \sigma 22)$	2+ 2μ σ1 σ2)/2E C) (σ12 +σ	σ22-2μ σ1 σ2)/2E D) None
28) Maximum s	strain energy theory is	also called as	[]
A) Energy distor	rtion theory B) Energy	v principal theoryC) Both A	& B D) None	
29) Mohr's circ	le is a graphical metho	od to find	[]
A) Bending stream	sses B) Principal	stresses C) Torsional stres	ses D) None	
30) Mohr's stres	ss circle method is use	d to analyze a body under	[]
A) Complex stre	esses	B) Tensile and con	mpressive stresses	
C) Axial and lor	ngitudinal stresses	D) None		

QUESTION BANK	2019
QUESTION BANK	2019

31) The ordinate of the	Mohr's circle is a			[]
A) Shear stress	B) Normal stress	C) Normal as well as	shear stressD)	None	
32) The principal strain	n due to σ 1(tensile) and	σ^2 (Compressive) stre	ess will be	[]
A) (1/E)(σ 1 + σ 2)	B) (1/E)(σ1 +μ σ2)	C) (1/E)(σ1 -μ σ2)	D) No	one	
33) The principal strain	n due to $\sigma 1$ (compressiv	we) and $\sigma 2$ (tensile) stre	ess will be	[]
A) $(1/E)(-\sigma 1 + \sigma 2)$	B) (1/E)(-σ1 +μ σ2)	C) (1/E)(- σ1 -μ σ2)	D) No	one	
34) The angle between	normal stress and tange	ential stress is known a	s angle of	[]
A) Declination	B) orientation	C) obliquity	D) rot	ation	
35) Principal stress is th	e magnitude of	stress acting on the	e principal plan	e.[]
A) Normal stress	B) Shear stressC) Bo	th a. and b	D) None of th	ne above	e
36) Which of the follow	ving stresses can be det	ermined using Mohr's	circle method?	[]
A) Torsional stress	B) Bending stress	C) Principal stress	D) All of the	above	
37) In Mohr's circle me	thod, compressive dire	ct stress is represented	on	[]
A) positive x-axis	B) positive y-axis	C) negative x-axis	D) negative y	-axis	
38) What is the value of tensile load of 100 kN?			which is subject	cted to a	axial]
A) 58.73 Mpa	B) 40.23 Mpa	C) 39.60 Mpa	D) None of th	ne above	e
39)The maximum tange	ential stress $\sigma t = (\sigma x \sin \theta)$	$12\theta)/2$ is maximum if,	θ is equal to	[]
A) 45 ⁰	B) 90 ⁰	C) 270 ⁰	D) all of the a	above	
40) Mohr' s circle is a graphical method to find					
A) Bending stresses	B) Bucking stresses	C) Torsional shear st	ressesD) None		

<u>UNIT –II</u>

SHEAR FORCE AND BENDING MOMENTS & THEORY OF SIMPLE BENDING

1)	The point of contraflexture occurs A) Cantilever beams only	in B) Continuous beams only	[]			
	C) Over hanging beams only	D) All types of beams					
2)	Bending moment is a function of A)Linear between two point loads	B) Non-linear between two point loads	[]			
	C) Uniformly distributed loading	D) Always non linear					
3)	load is	that occur in a fixed end beam and subjected t	o conce [entrated			
	A) 0 B) 2	C)1 D) 3					
4)	If the load at the free end of a cant A) At the free end B) At the su	tilever is increased the failure will occur apport C) At the centreD) Between free end	[d and co] entere			
5)	Point of contra flexure is where A) Shear force is zero	B) Shear force is maximum	[]			
	C) Bending moment changes sign	D) None					
6)		nts possible at a hinge end for a general loading C) 0 D) 3	[]			
7)	1	and subjected to lateral loads will develop at ar rce B) Bending moment and twisting moment	ny sectio	on[]			
	C) Twisting moment and shear for	rce D) Bending moment twisting momentand s	hear for	rce			
8)		e sitting on a plank of length L floating on w of the plank, the bending momentat the centre of C) WL /32 D) Zero					
9)	a beam of span (L) at a distance (x	g moment (M) and intensity of load (w) acting x) along the axis is given by $/dx^2$ C) M= EI d ² M/dx ² D) M =wL ² /	[ously on]			
10)	_	simply supported at both supports. It carr The bending moment at mid span is C) $wL^2/16$ D) $wL^2/24$	ies a ı [iniformly]			
11)	If the shear force diagram of a sim A) Uniformly distributed load	nply supported beam is parabolic, then the load B) Concentrated load	on the	beam is			
	C) Couple	D) Linearly varying distributed load	[]			

12) If the point load at	free end on a cantilever	is increased so as to c	ause raptur, sa	me will	occur
A) Below the load		B) At fixed end	-		
C) At centre		D) Between centre a	and free end	[]
13) The bending mome	nt on a section is maxin	num where shearing for	orce is	[]
A) Maximum	B) Minimum	C) Zero	D) Constant		
14) The bending mome A) Rectangle	ent on a cantilever beam B) Parabola	carrying concentrated C) Triangle	l load at the en D) Elliptical]
15) Shear force is assoc	tiated with			[]
A) Bending Momen	nt B) Torsional momen	t C) Normal thrust	D) Axial thr	rust	
16) The bending mome A) Maximum	nt at the fixed end of a of B) Minimum	cantilever beam is C) WL/2	D) WL	[]
-	nt diagram for a cantile max. height under free e	-] d end
C) A parabolic curv	ve	D) none of these			
18) At the point of cont	ra flexure			[]
A) B.M is minimur		B) B.M is maximun	1		
C) B.M is either ze	ro or changes sign	D) None of these			
	ro or changes sign	,	always	[]
	0 0	,	always D) Depends	[upon lo] ading
19) Bending moment at A) Zero20) The rate of change	supports in case of sim	ply supported beam is C) Negative qual to	•	[upon lo [] ading]
19) Bending moment at A) Zero	supports in case of sim B) Positive	ply supported beam is C) Negative	•	[] ading]
19) Bending moment at A) Zero20) The rate of change A) Shear force	supports in case of sim B) Positive of bending moment is e	ply supported beam is C) Negative qual to C) Deflection	D) Depends D) None of	[these]
19) Bending moment at A) Zero20) The rate of change A) Shear force	a supports in case of sim B) Positive of bending moment is e B) Slope	ply supported beam is C) Negative qual to C) Deflection	D) Depends D) None of	[these]
 19) Bending moment at A) Zero 20) The rate of change A) Shear force 21) The variation of the A)Linear 22) A portion of beam I subjected to 	 supports in case of sim B) Positive of bending moment is e B) Slope bending moment in the B)Parabolic between two sections is 	ply supported beam is C) Negative qual to C) Deflection e portion of a beam can C)Cubic said to be in pure ben	D) Depends D) None of trying linearly [D)Constant ding when the	[these varying] section i] load is s]
 19) Bending moment at A) Zero 20) The rate of change A) Shear force 21) The variation of the A)Linear 22) A portion of beam I subjected to A) constant bending 	 supports in case of sim B) Positive of bending moment is e B) Slope bending moment in the B)Parabolic between two sections is g moment and zero S.F. 	ply supported beam is C) Negative qual to C) Deflection e portion of a beam can C)Cubic said to be in pure bence B) constant shear fo	D) Depends D) None of f rrying linearly [D)Constant ding when the rce and zero be	[these varying] section i] load is s]
 19) Bending moment at A) Zero 20) The rate of change A) Shear force 21) The variation of the A)Linear 22) A portion of beam I subjected to A) constant bending C) constant bending 	 supports in case of sim B) Positive of bending moment is e B) Slope bending moment in the B)Parabolic between two sections is g moment and zero S.F. g moment and constant a 	ply supported beam is C) Negative qual to C) Deflection e portion of a beam can C)Cubic said to be in pure benc B) constant shear fo S.F.D) None of the ab	D) Depends D) None of a rrying linearly [D)Constant ding when the rce and zero be ove	[these varying] section i [ending n] load is s] noment
 19) Bending moment at A) Zero 20) The rate of change A) Shear force 21) The variation of the A)Linear 22) A portion of beam I subjected to A) constant bending C) constant bending 	 supports in case of sim B) Positive of bending moment is e B) Slope bending moment in the B)Parabolic between two sections is g moment and zero S.F. 	ply supported beam is C) Negative qual to C) Deflection e portion of a beam can C)Cubic said to be in pure benc B) constant shear fo S.F.D) None of the ab	D) Depends D) None of a rrying linearly [D)Constant ding when the rce and zero be ove	[these varying] section i [ending n] load is s] noment
 19) Bending moment at A) Zero 20) The rate of change A) Shear force 21) The variation of the A)Linear 22) A portion of beam I subjected to A) constant bending C) constant bending 23) Of the several prism maximum 	 supports in case of sim B) Positive of bending moment is e B) Slope bending moment in the B)Parabolic between two sections is g moment and zero S.F. g moment and constant a 	ply supported beam is C) Negative qual to C) Deflection e portion of a beam can C)Cubic said to be in pure benc B) constant shear fo S.F.D) None of the ab	D) Depends D) None of a rrying linearly [D)Constant ding when the rce and zero be ove	[these varying] section i [ending n e having [] load is s] noment
 19) Bending moment at A) Zero 20) The rate of change A) Shear force 21) The variation of the A)Linear 22) A portion of beam I subjected to A) constant bending C) constant bending 23) Of the several prism maximum A) moment of inert 24) A beam of uniform 	 supports in case of sim B) Positive of bending moment is e B) Slope bending moment in the B)Parabolic between two sections is g moment and zero S.F. g moment and constant and constant	ply supported beam is C) Negative qual to C) Deflection e portion of a beam can C)Cubic said to be in pure bend B) constant shear fo S.F.D) None of the ab eight the strongest in flo C) tensile strength	D) Depends D) None of a rrying linearly [D)Constant ding when the rce and zero be ove exure is the one	[these varying] section i [ending n e having [] load is s] noment
 19) Bending moment at A) Zero 20) The rate of change A) Shear force 21) The variation of the A)Linear 22) A portion of beam I subjected to A) constant bending C) constant bending 23) Of the several prism maximum A) moment of inert 24) A beam of uniform A) bending momen 	 supports in case of sim B) Positive of bending moment is e B) Slope bending moment in the B)Parabolic between two sections is g moment and zero S.F. g moment and constant is natic beams of equal leminatic beams of equal leminatic ia B) section modulus strength has at every set 	ply supported beam is C) Negative qual to C) Deflection e portion of a beam car C)Cubic said to be in pure bend B) constant shear fo S.F.D) None of the ab egth the strongest in fle C) tensile strength ction same C) deflection	 D) Depends D) None of a rrying linearly D)Constant ding when the a rce and zero be ove exure is the one D) area of c/ D) stiffness 	[these varying] section i [ending n e having [/s [] load is s noment]]

			QUESTION BANK 201	19
A) 8 kN-m	B) 16 kN-m	C) Zero	D) 32 kN-m	
26) The curvature of th A) $\frac{\text{EI}}{\text{M}}$	the beam is equal to $B)\frac{ME}{I}$	C) $\frac{M}{EI}$	$D) \frac{MI}{E}$]
· •	the maximum bending	-	blate section be 120 mm wide Take $E = 2 \times 10^5 \text{ N/mm}^2)[$ D) 200 N/mm ²	and]
the section from th	e neutral axis is called	l		oint of]
A) Moment of iner		B) section modu		
C) polar moment of		D) modulus of r		
section modulus (7) is given by	· -	n, moment of resistance (M) a	
A) M = $\frac{\sigma}{Z}$	B) $M = \frac{Z}{\sigma}$	C)M = $\sigma \ge Z$	D) M = $\frac{1}{\sigma x Z}$	
30) Choose the correct	statement		[] liameter D and internal diame] eter d is
equal to $\frac{\pi(D^4-d^4)}{64D}$	B) Section modulu	us of a circular section	on of diameter D is $\frac{\pi D^4}{32}$	
C) Section modulu	s of a rectangular secti	ion is $\frac{bd^2}{6}$ D) none	of the above	
31) A beam of uniformA) varying the dep	strength can be desig th of the beam but ma	•]
B) varying the wid	th of the beam but ma	intaining constant de	epth	
C) varying width a	nd depth	D) any one of the	ne above	
32) Fliched beam meanA) continuous bean		B) fixed beam	[]
C) beam of compo	site section consisting	of a wooden beam s	trengthened by mild steel plat	tes
D) none of the abo	ve			
33) A short column of The shape of Kern	•	rries a point load (W	y) acting with an eccentricity ((e).]
A) square	B) rectangle	C) circle	D) rhombus	L.
34) Which one of the c A) The value of "Y	orrect assumption of t 'oung's Modulus'' is s	• •	e]
	ion of the beam remain			
	the beam is homogene	-	f the above	
-,		<i></i> , , _ _, _ , _		

			QUESTION BA	NK 2	019
35) A rectangular beam Then the moment of A) 1666.67 kN-m	of cross section 50 mm f resistance of the sectio B) 1666.67 N-mm	on is given by	to bending stress D) 1.67 N-m	s of 20 [N/mm ² .]
36) A circular section o A) 785.398 cm ³	f a beam having dia 200 B) 785.3 mm ³		n modulus is giv D) none	en by[]
37) Section modulus of A) where the M.I. o	a beam is maximum at f a section is minimum	B) where the M.I. o	f a section is ma	[ximum]
C) where the 'y' is t	maximum	D) none of the above	/e		
38) Units for section me A) mm ²	odulus of a beam is B) N/mm ²	C) mm ³	D) mm ⁴	[]
39) Section modulus for dimensions are b, d A) $\frac{BD^3-bd^3}{32D}$	Then the section module $B) \frac{BD^3 - bd^3}{16D}$		ensions is B, D a $D) \frac{BD^3 - bd^3}{12D}$	nd insi [de]
40) When a rectangular A) bottomfibre	beam is loaded transver B) top fibre	rse the max. compress C) neutral axis	sive stress develo D) None	ops on	[]

QUESTION BANK	2019
<u>UNIT –III</u>	
SHEAR STRESS DISTRIBUTION &	
TORSION OF CIRCULAR SHAFTS AND SPRINGS	

		CULAR SIL		NIII US	
1.	The shear stress in a beam is zero (A) at the centroid of the section	(B) on	the extreme free	[surfacefibres]
	(C) at the neutral axis but not at the				
2.	The shear stress on a beam section i			Г	1
2.	(A) at the centroid of the section		the extreme free	surface fibres	1
	(C) at the neutral axis but not at the	centroid (D) at	the free edges		
3.	The ratio of the maximum shear stree	ess to the average	ge shear stress of	a rectangular section	n is
	(A) 2 (B) 1.5 (C) 1.	75 (D) No	one	[]
4.	The shear stress distribution across a	e		[]
	(A) linear (B) cubic para	abola	(C) parabolic	(D) hyperbol	ic
5.	The ratio of average shear stress to r	naximum shear		_]
	(A) 2 (B) 3/2		(C) 4/3	(D) 3/4	
6.	A beam of triangular cross-section				e 'F'. The
	shear stress will be maximum at a di (A) $h/2$ (D) $2h/2$	istance from the	1	-	J
-	(A) h/3 (B) 2h/3	61 (1) 1	(C) $h/2$	(D) 3h/4	
7.	A beam of triangular cross-section maximum shear stress will be	of base 'b' and	height 'h' subjec	r ted to a shear force	F'. The
			3F	(D) $\frac{4F}{hh}$]
	(A) $\frac{F}{bh}$ (B) $\frac{2F}{bh}$		$(C)\frac{3F}{bh}$	(D) $\frac{1}{bh}$	
8.	A beam of triangular cross-section	of base 'b' and	height 'h' subject	cted to a shear force	e 'F'. The
	shear stress at the neutral axis is		- 7]]
	(A) $\frac{8F}{3bh}$ (B) $\frac{2F}{bh}$		$(C)\frac{3F}{4bh}$	(D) $\frac{4F}{3bh}$	
9.	A beam of triangular cross-section	of base 'b' and	height 'h' subject	cted to a shear force	e 'F'. The
	ratio of maximum shear stress to the	e shear stress at	the neutral axis i	s []
	(A) 7/5 (B) 9/5		(C) 11/8	(D) 9/8	
10	The variations of shear stress in web	-		[]
	(A) linear and parabolic	(B) parabolic	and linear		
	(C) parabolic and parabolic	(D) linear and	llinear		
11	When a beam is subjected to bendin	g, the most eco	nomical section f	or equal stress is[]
	(A) circular (B) square		(C) rectangular	(D) hollow c	ircular
12	. A solid shaft of diameter D transm	its the torque ed	qual to	[]

(A) $\frac{\pi}{22} \tau D^3$	(B) $\frac{\pi}{64} \tau D^3$	$(C)\frac{\pi}{16}\tau D^3$	(D) $\frac{\pi}{8} \tau D^3$		
13. The torque transmi	04	10	(D) and interna	l diame	ter (d) is
equal to	·			[]
	(B) $\frac{\pi}{64} \tau [D^3 - d^3]$	$(\mathbf{C}) \xrightarrow{\pi} \tau [\mathbf{D}^4 - \mathbf{d}^4]$	(D) $\frac{\pi}{-\tau}$ [D ⁴ -d ⁴	4 ₁	-
32 12 4 1	(B) 64 ⁴ [B 4]	(C) 16D 16D 16		1	
14. Polar moment of ind	ertia of a hallow circula	ar shaft is		[]
(A) $\frac{\pi}{10}$ [D ³ -d ³]	(B) $\frac{\pi}{32} [D^4 - d^4]$	$(C) \frac{\pi}{2} [D^3 - d^3]$	(D) $\frac{\pi}{10}$ [D ⁴ -d ⁴]		
15. The torsional rigidit	<u> </u>	01	.	г	1
15. The torsional fight	ty of a shart is defined	as the torque required	to produce	L]
(A) Maximum twist	t in shaft (B) M	Maximum shear stress	in shaft		
(C) Minimum twist	· ,	A twist of one radian p	er unit length of	shaft	
16. Polar modulus of sh	naft is			[]
(A) J*R	(B) J/R	(C) R/J	(D) 1/J		
17. For two shafts in pa				ſ	1
-				L	-
	(B) $T = T1 = T2$. ,	(D) $T = (T1.7)$	F2)^1/2	-
18. A carriage spring is	0			L	
(A) Shear	• • •	(C) Bending	(D) None	-	-
19. A closed helical spr	-	-		Ĺ]
(A) Shear	(B) Compression	(C) Bending	(D) None		
20. A closed helical spr	•	•		Ĺ]
(A) Shear	(B) Compression	(C) Bending	(D) None	_	
21. An open helical spr	•	•		[]
(A) Shear	B) Compression	C) Bending	D) None		
22. Spring index is				[]
(A) D - d	(B) D/d	(C) D2 –d2	(D) None		
23. A power transmittin	ng ductile material shaf	t under P, T and M wi	ll be designed or	n the	
basis of				[]
(A) Rankine theory	(B) Guest Theory	(C) Haigh theory	(D) None		
24. 13) Two shafts have	ing same length and m	aterial are joined in se	eries and subject	ed to a	torque of
10KN-m. If the rational terms of the rational sector of the rational sector is the rationa	o of their diameters is 2	2:1, then the ratio of th	eir angles of twi	st is[]
(A) 16:1	(B) 2:1	(C) 1:2	(D) 1:16		
25. A solid circular sha		. ,	· · /	maxim	um shear
stress in the shaft is				Г	1
(A) D^2	(B) D	(C) $1/D^2$	(D) $1/D^3$	L	J
				1.	1.4
26. The maximum sheat	ar stress produced in	a snart is SIN/mm ² . T	ne snart is 40m	in dia,	and then
twisting moment is	$(\mathbf{D}) \in \mathbf{O}$ N	(\mathbf{O}) 10 (\mathbf{N})	(\mathbf{D}) 251 M	L]
(A) 628 N-m	(B) 63 N-m	(C) 126 N-m	(D) 251 N-m		

27. If a shaft rotates a	t 100rpm and is subje	ected to a torque of 3000	N-m, the powe	er tran	smitted in
KW would be		_	_	[]
(A) 30П	(B) 15П	(C) 20П	(D) 10П		
28. Leaf springs are us	ed in			[]
(A) Scooters	(B) Bikes	(C) Trucks	(D) None		
•	close coiled spring is			[]
(A) < 100	(B) >100	(C) = 100	(D) None		
	ose coiled helical sprin	-		[]
(A) $16WD/\pi d^3$	(B) $32WD/\pi d^3$	(C) $8WD/\pi d^3$	(D) 18WD/π	d'	_
	close coiled helical spi $(D) = \frac{2}{3}$	•	$(\mathbf{D})^{2}$	[]
(A) $\tau^2/4G$	(B) $\tau^2/16G$	(C) $\tau^2/8G$	(D) $\tau^2/18G$	г	1
32. Spring is an(A) Elastic device	(B) Plastic device	(C) Elastic as well as	s plastic device	$\left(D \right) N$	Jone
· · ·		ges in its section modulus		(D) I	VOIIC
-	me (B) Will decrease		-	ease by	4 times
34. Centroid of a section				[1
(A) About which \int		About which ∫ydA=0		L	1
(C) About which $\int $		About which $\int x^2 y^2 dA$	A=0		
				r	
35. Variation of shear				[J
(A) Parabolic varia		Linear variation			
(C) Cubical variati		None		r	
36. A beam is designed	d on the basis of	(\mathbf{D}) \mathbf{D} and \mathbf{I} in a		[]
(A) Shear force	well as handing mam	(B) Bending	moment		
	well as bending mome l be least at the extrem			[]
0	a of cross section		ent of inertia	L]
(C) Maximum sect		(D) None	ent of mertia		
	nce of a beam should b			[1
	e bending moment	(B) Less than the be	nding moment	L	J
(C) Two times the	•	(D) None	C		
	ng strain in a beam has	8		[]
(A) Parabolic varia	ntion	(B) Linear variation			
(C) Cubical variati	on	(D) None			
40. Variation of shear	stress in a beam has			[]
(A) Parabolic varia					

UNIT –IV

DEFLECTIONS OF BEAMS

1. Which of the following equations is correct 1 (A) $\frac{1}{R} = \frac{d^2 y}{dx^2} = \frac{EI}{M}$ (B) $\frac{1}{R} = \frac{d^2 y}{dx^2} = \frac{M}{EI}$ (C) $R = \frac{d^2 y}{dx^2} = \frac{M}{EI}$ (D) $R = \frac{d^2 y}{dx^2} = \frac{EI}{M}$ 2. The expression EI $\frac{d^2y}{dr^2}$ at a section of a member represents] ſ (B) rate of loading (C) bending moment (D) slope (A) shear force 3. The expression EI $\frac{d^3y}{dr^3}$ at a section of a member represents ſ] (A) shear force (B) rate of loading (C) bending moment (D) slope 4. The expression EI $\frac{d^4 y}{dr^4}$ at a section of a member represents ſ] (A) shear force (B) rate of loading (C) bending moment (D) slope 5. A cantilever of length (L) carries a point load (W) at the free end. The downward deflection at the free end is equal to] ſ (A) $\frac{WL^3}{8EL}$ $(B) \frac{WL^3}{2EL}$ $(C) \frac{5WL^3}{384EI}$ (D) $\frac{WL^3}{40EL}$ 6. A cantilever of length (L) carries a point load (W) at the free end. The slope at the free end will be] ſ $(C) \frac{WL^2}{24EI}$ $(A) \frac{WL^2}{(EL)}$ (B) $\frac{WL^2}{2EL}$ (D) $\frac{WL^2}{1/E^4}$ 7. A cantilever of length (L) carries audl w per unit length over the whole length. The downward deflection at the free end will be ſ] (A) $\frac{WL^4}{NEL}$ (B) $\frac{WL^4}{2E}$ $(C) \frac{5wL^4}{204E}$ (D) $\frac{WL^4}{40EL}$ 8. A cantilever of length (L) carries audl w per unit length over the whole length. The slope at the free end will be [] $(C) \frac{wL^3}{24EL}$ (A) $\frac{WL^3}{6EL}$ (B) $\frac{WL^3}{2EL}$ (D) $\frac{\text{wL}^3}{16\text{EI}}$ 9. A uniform simply supported beam of span (L) carries a point load (W) at the centre. The downward deflection at the centre will be []

(A)
$$\frac{WL^3}{8EI}$$
 (B) $\frac{WL^3}{3EI}$ (C) $\frac{5WL^3}{384EI}$ (D) $\frac{WL^3}{48EI}$

10. A uniform simply supported beam of span (L) carries a point load (W) at the centre. The slope at the support will be

(A)
$$\frac{WL^2}{6EI}$$
 (B) $\frac{WL^2}{2EI}$ (C) $\frac{WL^2}{24EI}$ (D) $\frac{WL^2}{16EI}$

11. A uniform simply supported beam of span (L) carries a uniformly distributed load w per unit length over the whole span. The downward deflection at the centre will be []

(A)
$$\frac{wL^4}{8EI}$$
 (B) $\frac{wL^4}{3EI}$ (C) $\frac{5wL^4}{384EI}$ (D) $\frac{wL^4}{48EI}$

12. A simply supported beam is of rectangular section. It carries a udl over the whole span. The deflection at the Centre is y. If the depth of the beam is doubled, then the deflection at the centre would be[]

(A)
$$2y$$
 (B) $4y$ (C) $y/2$ (D) $y/8$

13. A simply supported beam carries a udl over the whole span. The deflection at the centre is y. If the distributed load per unit length is doubled and also depth of the beam is doubled, then the deflection at the centre would be

14. Maximum deflection of a cantilever due to pure bending moments 'M' at its free end is []

(A)
$$\frac{ML^2}{3EI}$$
 (B) $\frac{ML^2}{4EI}$ (C) $\frac{ML^2}{6EI}$ (D) $\frac{ML^2}{2EI}$

15. A simply supported beam of span 'L' metres is subjected to a point load at the mid span. If ' θ ' is the slope at the support, the maximum deflection is equal to [] (A) $\theta/3$ (B) L/3 θ (C) 3L/ θ (D) θ L/3

16. A simply supported beam carries uniformly distributed load of 20 kN/m over the length of 5 m. If flexural rigidity is 30000 kN-m², what is the maximum deflection in the beam? []

- (A) 5.4 mm (B) 1.08 mm (C) 6.2 mm (D) 8.6 mm
- 17. In cantilever beam, slope and deflection at free end is _____[](A) zero(B) maximum(C) minimum(D) none of the above
- 18. Which of the following statements is/are true for a simply supported beam? []

(A) Deflection at supports in a simply supported beam is maximum

(B) Deflection is maximum at a point where slope is zero

(C) Slope is minimum at supports in a simply supported beam

			QUESTION BANK	2019
(D) All of the abov	e			
		f the beam before and a	fter loading at a poin	t is called as
17. The vertical distance			[]	t is called as
(A) deformation	(B) slope (C) deflection (D)	none of the above	
		A and B by the momen		n hu
-	-	-	-	•
	between A and B/2EI		between A and B/3E	_
	between A and B/EI	(D) None		
'A' is area of B.M.		ction of the beam is given	ven by 'y' and is equ	al to (where
(A) $\frac{A}{EI}$	(B) $\frac{M}{FI}$	$(C) \frac{M\bar{x}}{FL}$	(D) $\frac{A\bar{x}}{EL}$	-
51		of the beam is given by	E I	(where 'A' is
area of B.M.D.)			[]
(A) $\frac{A}{FI}$	(B) $\frac{M}{EI}$	(C) $\frac{M\bar{x}}{FL}$	(D) $\frac{A\bar{x}}{FI}$	
	51	LI		
23. In the strain energy	method of slope and	l deflection, load is appl	ied []
(A) gradually	(B) suddenly	(C) with an impact	(D) none	
24. Macaulay's method	d is more convenient	for beams carrying	[]
(A) single concentr	rated load (B) multi-loads (C)	UDL (D) none	
25. Maximum deflection	on in a S.S. beam wit	h UDL 'w' over the enti	ire span will be []
(A) at the left hand	support (B) at the	Right support(C)	at the center (D) nor	ie
26 of a beam is a m	neasure of its resistan	ce against deflection]]
(A) Strength	(B) Stiffness	(C) Slope	(D) Maximum be	ending
27. The maximum ind	lucedstresses s	hould be within the sa	fe permissible stress	ses to ensure
strength of the bear	n		[]
(A) Tensile	(B) Compressive	(C) Bending	(D) Lateral	
28. Elastic line is also	called as		[]
(A) Deflection curv	e (B) Plastic curve	(C) Linear curve	(D) Hooke's curv	ve
29. In simply supported	d beams, the slope is	at supports]]
(A) Minimum	(B) Zero	(C) Maximum	(D) Uniform	
30. In simply supported	d beam deflection is	maximum at	[]
(A) Midspan	(B) Supports	(C) Point of loadin	g (D) Through out	
-			-	

31. Calculate the maximum deflection of a simply supported beam if the maximu	ım slor	ne at A is
0.0075 radians and the distance of centre of gravity of bending moment diagram	-	
1.33 metres	[]
(A) 9.975 mm (B) 9.5 mm (C) 9.25 mm (D) 9.785 mm	n	J
32. A simply supported beam of span as shown in the figure is subjected to a concen		oad w at
its metre span and also to a uniformly distributed load equality w what is the tota		
its midpoint.]]
(A) $18 \text{ Wl}^3 / 384 \text{ EI}$ (B) $13 \text{ Wl}^3 / 384 \text{ EI}$ (C) $5 \text{ Wl}^3 / 384 \text{ EI}$ (D) $8 \text{ Wl}^3 / 384 \text{ EI}$	4 EI	J
33. Deflection under the load in a S.S.Beam with 'W' not at the center will be	[]
(A) $4Wa2b2/3EIL$ (B) $2Wa2b2/3EIL$ (C) $Wa2b2/3EIL$ (D) None	L	1
34. Difference in slopes between two points A and B by the moment area method is	given h	v
(A) Area of BMD between A and B/2EI (B) Area of BMD between A and B	-	5
(C) Area of BMD between A and B/EI (D) None	[1
35. Difference in deflections between two points A and B by the moment area methods	od is gi	-
(A) (Area of BMD between A and B). XB/2EI(B) (Area of BMD between A and	-	•
(C) (Area of BMD between A and B). XB /EI (D) None	ĺ	1
36. Difference in slopes between two points A and B by the moment area method is	given b) V
(A) Area of BMD between A and B/2EI (B) Area of BMD between A and B	0	
(C) Area of BMD between A and B/EI (D) None	[]
37. Which one method is the best for finding slope and deflection	[]
(A) Double integration method (B) Macaulay 's method		
(C) Strain energy method (D) None		
38. Slope at a point in a beam is the	[]
(A) Vertical displacement(B) Angular displacement (C) Horizontal displacement	(D) N	Jone
39. Deflection at a point in a beam is the	[]
(A) Vertical displacement (B) Angular displacement		
(C) Horizontal displacement (D) None		
40. Maximum slope in a cantilever beam with a moment M at the free end will be	[]
(A) 3ML/EI (B) 2ML/EI (C) ML/EI (D) None		

<u>UNIT – V</u>

COLUMNS

1. The length of a column	, having a uniform cir	cular cross-section of 7	.5 cm diameter	and whose ends	
are hinged, is 5 m. If the value of E for the material is 2100 tonnes/cm ² , the permissible maximum					
crippling load will be				[]	
(A) 1.288 tonnes	(B) 12.88	(C) 128.8 tonnes	(D) 28	8.0	
2. Stress in a beam due to	simple bending, is			[]	
(A) directly proportional	(B) inversely proporti	onal (C) curvilinearly r	elated (D) none	of these.	
3 is a vertica	l member subjected to	direct compressive for	ce.	[]	
(A) Strut	(B) Beam	(C) column	(D) po	st	
4. The inclined member ca	arrying compressive lo	ads is		[]	
(A) Strut	(B) Beam	(C) column	(D) po	st	
5. The load at which a ver	tical compression men	ber just buckles is kno	wn as	[]	
(A) Critical load	(B) Crippling load	(C) Buckling load	(D) Any one o	of these	
6. A column that fails due	e to direct stress is calle	ed		[]	
(A) Short column	(B) Long column	(C) Medium column	(D) Slender co	olumn	
7. A column whose slende	erness ratio is greater th	nan 120 is known as		[]	
(A) short column	(B) Long column	(C) Medium column	(D) Composite	e column	
8. The direct stress include	ed in a long column is.	as compared to bendi	ng stress.	[]	
(A) More	(B) Less	(C) Same	(D) Negligible	2	
9. 9. For long columns, the	e value of buckling loa	d iscrushi	ng load.	[]	
(A) Less than	(B) More than	(C) Equal to	(D) None of the	nese	
10. The slenderness ratio is	the ratio of			[]	
(A) Length of column	to least radius of gyrati	on			
(B) Moment	of inertia	to area	of	cross-section	
(C) Area of cross-section	on to moment of inertia	L			
(D) Least radius of gyra	ation to length of the co	olumn			
11. The Rankine formula he	olds good for			[]	
(A) Short column		(B) Long column			
(C) Medium column		(D) Both short and lo	ong column		

			QUESTION BA	NK 2	2019
12. A column of length 4	m with both ends fixed	may be considered as	equivalent to a c	columr	of length
with both en			1	[]
(A)2 m	(B) 1 m	(C) 3 m	(D) 6 m		
13. According to Euler, the	he buckling load for a	column is given by P [:]	$=\pi^2 \text{EI/l}^2$ in the	nis equ	uation, the
value of x for a colum	in with one end fixed and	1 other end free is		[]
(A)1	(B) 2	(C) 4	(D) ½		
14. Rankine's formula is g	generally used when sler	iderness ratio lies in b	etween	[]
(A)0-60	(B) 0-80	(C) 0-100	(D) Any value	e	
15. Euler's formula is not	valid for mild steel colu	mn when slenderness	ratio is	[]
(A) More than 100	(B) Less than 100	(C) Less than 80	(D)More than	ı 80	
16. An electric pole is 6.5	m high from the ground	l level. Its effective ler	igth for design p	urpose	2S
will be				[]
(A) 6.5 m	(B) 3.25 m	(C) 13.0 m	(D) 12.0 m		
17. Rankine-Gordon's emp	pirical formula is applica	able for		[]
(A) long column 18. What is the value of R	(B) short column Rankine's constant for cas	(C) both A and B st iron?	(D) none of th	he abo	ve]
(A)1/750	(B) 1 / 1600	(C) 1 / 7500	(D) 1 / 9000		
19. The ratio of effective l	length and least lateral d	imension for short col	umn is	[]
(A)>12	(B) b < 12	(C) ≥ 12	(D) none of the	he abo	ve
20. In Euler's theory, long	g columns having the rat	io of (L _e /LLD) \geq 12 f	ail due to	[]
(A) Crushing	(B) buckling	(C) both a. and b	(D) none of th	he abo	ve
21. Euler's formula is appl	licable only			[]
1. for short columns	2. for long columns	3. if slenderness rate	io is greater than	ι √(π² Ι	E / σ _c)
4. if crushing stress <	buckling stress 5. if c	crushing stress \geq buck	ling stress		
(A) 1, 2 and 3	(B) 2, 3 and 5	(C)3 and 4	(D) all of the	above	

			QUESTION BA	NK	2019
22. Slenderness ratio is th	ne ratio of effective lengtl	n of column and		[]
	of gyration of a column		ove		
-	between actual length and cast iron column having b gth and L _e =effective leng	both ends fixed?	ile determining c	ripplir [ng load for]
(A) $L_e = L$	(B) $L_e = L/2$	(C) $L_e = 2L$	(D) $L_e = 4L$		
24. While determining cr	rippling load, the effectiv	ve length of solid cir	cular bar is $1/\sqrt{2}$	of act	tual length
(C)one end is fixed an 25. What is the safe load		•	ed and other end i ter of 40 mm. The	s hinge	ed
(A) 120 Kn 26. If the effective length	(B) 124 kN of a column is twice the		(D) 150 kN ne column is	[]
(A) fixed at both the	ends	(B) hinged at both	the ends		
(C) fixed at one end a	and free at the other end	(D) fixed at one er	nd and hinged at t	he othe	er end
27. Bucking of column m	ieans			[]
(A) Lateral deflection	n (B) Axial deflection	(C) Torsional deflec	ction (D) None of	the ab	ove
28 Slenderness ratio is axis]	[l= length of column and	d k= least radius of ;	gyration of cross	section [n about its]
(A) l/k	(B) l/k	(C) 1/2k	(D) k/2l		
29. Columns with what si compressive stresses.		esigned with respect	to buckling but a	re desi [gned for]
(A)>1	(B) <1	(C) >30	(D) <30		
30. If slenderness ratio=4	5, which mode of failure	will dominate?		[]
Introduction to Solid Mecl	hanics				Page 27

			QUESTION BA	NK 2	2019
(A) Buckling		(B) Compressive St	resses		
(C) Both buckling and co	ompressive stress	(D) Can't be stated			
31. Short column and long c(A) Slenderness ratio	column are classified o (B) Diameter	n the basis of (C) Length	(D) None of	[the abo] ove
32. Cast iron column with a (A) Short Columns	slenderness ratio of 75 (B) Long Columns	5 are (C) Very short colu	mns(D) None of	[f the ab] pove
33. Pure Buckling uses the e	quation of			[]
(A) Rankin-Gordon	(B) Euler	(C) Stiffness	(D) None		
34. A steel column is a short (A) >120	column when the slen $(B) < 30$	derness ratio is (C) >30	(D) None	[]
35. A steel column is a long	column when the slend	derness ratio is		[]
(A)>12036. A steel column is a medi(A)> 120			(D) None	[]
(A)>12037. With identical beam and(A) Lesser load	(B) <30column, buckling occu(B) Larger load	(C) >30 urs as compared to be (C) Equal load	(D) None nding under a (D) None	[]
38. Nature of stresses production (A) Same	, j	· / 1	(D) None	[]
39. Keeping loading same bu(A) Increase		•		[]
40. Keeping loading same bu (A) Increase		Č,		[]

Prepared By: D. SUKANYA